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Oxacyclic ring systems a~ widely distributed in a large number of naturally occurring compounds and 

have been the foci of vigorous synthetic efforts particularly in conjunction with the total synthesii of 

polyether natural products.’ Many synthetic scheme8 are now available’ for the oxacycle synthesis. Radical- 

mediated cyclizati~ns~ were also extensively used for the construction of oxygen-containing ring systems. 

For example, a-haloacetal cyclization has now become one of the classic methods in synthesis and various 

cc-alkoxy alkyl, vinyl and aryl radical8 were also used in oxacycle synthesis.’ Alkoxy radicals were also 

used for cyclizations? Cyclization reactions of a variety of oxygen-substituted allcyl radical8 were reported 

rec4zntly.6 Vinyl ethers were used as radical acceptors in cyclic ether synthesis.’ 

We now wish to report that p-alkoxyacrylates* are exceptionally efficient radical acceptors in radical- 

mediated intramolecular cyclizations and that highly stereoselective synthesis of tetrahydrofumns and 

tetrahydropyrans is possible in many cases. 

Bromoakanols and alkynols were reacted with ethyl propiolate in the presence of N-methyl- 

morpholine and (IL?)-alkoxyacrylates la-ha were obtained in high yield’ (Scheme 1). Under the standard 

high dilution radical cyclization condition8 using tributylstannane.” five- or six-membered cyclic ether 

formation was achieved in uniformly high yield employing la-ha as substrates (Table 1). The high 
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Scheme 1 

efficiency of cyclization and complete preference of exe mode of cyclization of alkyl and stannylvinyl 

radicals ensure the usefulness of @dkoxyacrylates as radical acceptors. This reactivity and exe selectivity 

reflects the large orbital coefficient at the &carbon” in the LUMO of the @lkoxyacrylates which is 

expected to interact with relatively high-energy SOMO of alkyl and stannylvinyl radicals.‘* From the 
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synthetic point of view, formation of cis-25disubstitut tetrahydrofuran 5b and cis-2,6-disubstit 

tetrahydropyran 6b from 5s and 6a is particularly useful and notew~rthy.‘~ This cis selectivity can be 

explained by chair-like transition state confoxmations” depicted in Scheme 2. The tetrahydropyran 6b was 

hydrolyzed to yield (k)-(cis-6-methyltetrahydropyran-2-yl)acetic acid (6c)” which is the racemic form of a 

Lees Favor&la 

Scheme 2 
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component of civet, the scent gland secretion of civet cat Vivetra civet&a.‘6 This is one of the most direct and 

specific schemes for the synthesis of 6c. 
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The strategy for oxacycle synthesis delineated above can be applied to any systems with more than 

two hydroxyl groups: one hydroxyl group is needed for transformation into the ~alkoxyacrylate 

functionality and the carbon carrying the second hydroxyl group serves as the radical center after proper 

modification. For example, glycerol was converted into 3-bromopmpane-1,2_diol via acetonide protection, 

bromide substitution with carbon u%abromide and triphenylphosphine, and acidic workup. The primary 

hydroxyl group was protected as a TBS ether and the secondary hydroxyl group was then converted into a 

TBDPS or MOM ether. Selective removal of TBS moiety regenerated the primary hydtoxyl group in each 

case. Reaction with ethyl propiolate provided B-alkoxyacrylates 7a and 80, from which tetrahydrofumnyl 

products were obtained in high yields (Scheme 3). In these cases, both tmns and cis stemoisomem were 

isolated and it is interesting that opposite stemoselectivity is realized (MC vs Sb>&). 
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The scheme is well-suited for synthesis of other oxacycles including C-furanosides, which will be the 

subjects of our future communications. 
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